Cross bis-cycloadduct

DIENE-TRANSMISSIVE DIELS-ALDER REACTION OF A NEW CROSS-CONJUGATED TRIENE: SELECTIVE FORMATION OF MONO- AND BIS-CYCLOADDUCT

Otohiko TSUGE,* Shuji KANEMASA, Hirohiko SAKOH, and Eiji WADA
Research Institute of Industrial Science, and Department of Molecular Science
and Technology, Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University, Kasuga, Kasuga 816

A new activated cross-conjugated triene, 3-(methoxymethylene)-2,4-bis(trimethylsilyloxy)-1,4-pentadiene, was prepared. Its reactions with acetylenic dienophiles resulted in the exclusive formation of mono-cycloadducts, while in the reactions with cyclic olefinic dienophiles such as maleimides and maleic anhydride the mono- and bis-adducts were obtained depending upon the amounts of dienophiles.

The diene-transmissive Diels-Alder reaction of cross-conjugated triene consists of two consecutive cycloaddition reactions, the first one of which offers a diene functionality to the second. $^{1)}$ Of great use as a new synthetic tool is the cross type of diene-transmissive Diels-Alder reaction in which two different dienophiles are orderly incorporated in the bis-cycloadduct. However, the reaction of 3-benzylidene-2,4-bis(trimethylsilyloxy)-1,4-pentadiene \underline{A} (R=Ph) as a cross-conjugated triene has formed the bis-cycloadduct as a major product even when excess of the triene is used, $^{1)}$ indicating that the newly formed diene of mono-cycloadduct \underline{B} (R=Ph) is more highly activated by the two silyloxy substituents than either of two dienes in the starting triene. The cross type of diene-transmissive Diels-Alder reaction may be achieved by the use of a new cross-conjugated triene \underline{A} with a diene-activating substituent (e.g. R=OMe): The first cycloaddition reaction with a dienophile a=b is accelerated by the substituent R leading to the predominant formation of mono-cycloadduct \underline{B} that then reacts with another dienophile c=d to give the cross bis-cycloadduct C.

 $R:\ diene-activating\ substituent$

a=b: the first dienophilec=d: the second dienophile

In order to open the way to the cross type of diene-transmissive Diels-Alder reaction, a new activated cross-conjugated triene, 3-(methoxymethylene)-2,4-bis(trimethylsilyloxy)-1,4-pentadiene 1, was synthesized and its cycloaddition reactions with acetylenic and olefinic dienophiles were first investigated. The reactions with acetylenes exclusively produced the mono-aduucts, while the mono-and bisadducts were selectively obtained in the reactions with cyclic olefins depending upon the amounts of dienophiles used.

The activated triene $\underline{1}$ was prepared by the trimethylsilylation of 3-(methoxymethylene)-2,4-pentanedione $^{2)}$ which is readily available from 2,4-pentanedione and methyl orthoformate: The methoxymethylenepentanedione (0.03 mol) and chlorotrimethylsilane (0.12 mol) were heated in dry benzene at 40-50 °C for 24 h in the presence of triethylamine (0.13 mol) and zinc chloride (0.002 mol), the salt precipitated was filtered off, and the filtrate was distilled under a reduced pressure to give a colorless liquid (bp 72 °C/1.8 mmHg) in 82% yield. The triene $\underline{1}$ can be stored safely in the absence of moisture.

The reaction of $\underline{1}$ with two equivalents of dimethyl acetylenedicarboxylate $\underline{2a}$ in benzene at room temperature for 24 h and the work up with methanol afforded the mono-adduct $\underline{3a}$ (mp 77 °C) whose structure was determined on the basis of the spectral data as well as the elemental analysis. 3 , 4) The exclusive formation of mono-adduct $\underline{3a}$ is very much contrast to the predominant formation of bis-adduct in the reaction of phenyl-substituted triene \underline{A} (R=Ph). 1a) This reaction involves the formation of mono-cycloadduct \underline{D} , the methanol elimination induced by aromatization of \underline{D} leading to \underline{E} , and finally the desilylation of \underline{E} into the isolated product $\underline{3a}$ (Scheme 1). The 1 H-NMR analysis of the above reaction showed that both the intermediates \underline{D} and \underline{E} were actually participating in the reaction, and that the methanol elimination from \underline{D} occurred even at room temperature.

Scheme 1.

The similar reactions with dibenzoylacetylene $\underline{2b}$, methyl propiolate $\underline{2c}$, and methyl 2-butynoate $\underline{2d}$ under reflux in benzene (24 h for $\underline{2b}$, 48 h for $\underline{2c}$ and $\underline{2d}$) gave the corresponding mono-adducts $\underline{3b}$ (mp 189-190 °C), $\underline{3c}$ (mp 99-99.5 °C), and $\underline{3d}$ (mp 70 °C), no trace of bis-adducts having been formed in all cases. The high regioselectivity in the reactions with unsymmetrical acetylenes $\underline{2c}$ and $\underline{2d}$ is comparable to that reported previously. ^{1a)}

The reaction of $\underline{1}$ with an equivalent of N-phenylmaleimide $\underline{4a}$ in dry benzene at room temperature for 20 h and the treatment with methanol precipitated the mono-adduct $\underline{5a}$ (mp 227 °C) whose structure was confirmed by the spectral data. ⁵⁾ This product $\underline{5a}$ was also accompanied with the elimination of methanol. On the other hand, the reaction with two equivalents of $\underline{4a}$ at 50 °C for 20 h and the addition of hexane to the mixture precipitated the bis-cycloadduct $\underline{6a}$ (mp 188-190 °C) which was then desilylated into the bis-adduct $\underline{7a}$ (mp 148-150 °C) with a catalytic amount of trifluoroacetic acid in benzene (Scheme 2). The stereochemical assignment of $\underline{6a}$ was based on the high stereoselectivity of

the reaction of phenyl-substituted triene \underline{A} (R=Ph) with olefinic dienophiles, ^{1b)} the high endo selectivity observed in the cross type of reaction of $\underline{1}$, ⁶⁾ as well as the spectral data. ⁷⁾ During the desilylation of $\underline{6a}$, the configuration at the 6-position was inverted giving the thermodynamically more stable bis-adduct $\underline{7a}$, ⁸⁾ whose structure was confirmed by the spectral data, ⁹⁾ probably through an elimination-addition mechanism.

Similarly the mono-adduct $\underline{5b}$ (mp 186 °C), bis-cycloadduct $\underline{6b}$ (mp 185-187 °C), and bis-adduct 7b (mp 180-182 °C) were obtained in the reactions of $\underline{1}$ with N-methylmaleimide $\underline{4b}$.

Maleic anhydride $\underline{8}$ was found so reactive toward $\underline{1}$ that the reaction with an equivalent of $\underline{1}$ without solvent was completed in a few minutes at room temperature, the mono-cycloadduct $\underline{9}$ (bp 180 °C/1 mmHg (bulb-to-bulb)) being isolated by a vacuum distillation. The treatment of $\underline{9}$ with trifluoroacetic acid in benzene gave the desilylated anhydride $\underline{10}$ (mp 117-118 °C) in which the configuration at the 4-position was again inverted. As both the mono-cycloadduct 9 and the desilylated adduct $\underline{10}$ have an

Scheme 2.

anhydride ring which tends to open up in the presence of moisture or protic solvent, the anhydride $\underline{10}$ was esterified into the stable diester $\underline{11}$ (mp 92-92.5 °C). This compound $\underline{11}$ was also obtained directly from the esterification of the reaction mixture between $\underline{1}$ and $\underline{8}$ in 56% yield. The structures of $\underline{9}$, $\underline{10}$, and $\underline{11}$ were determined on the basis of the spectral data. Although the reaction of $\underline{1}$ with two equivalents of $\underline{8}$ formed the bis-cycloadduct \underline{C} , its purification as well as the conversion into a more stable derivative was unsuccessful.

As a conclusion, in the reactions with the triene <u>1</u> acetylenic dienophiles afford only the mono-adducts since the elimination of methanol from the mono-cycloadduct occurs faster than the second cycloaddition reaction. On the other hand, cyclic olefinic dienophiles provide both the mono- and biscycloadducts depending upon the amount of dienophile, showing that the cross type of diene-transmissive Diels-Alder reaction will be realized by employing these olefins as the first dienophiles.

The present work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- a) O. Tsuge, E. Wada, and S. Kanemasa, Chem. Lett., 1983, 239;
 b) O. Tsuge, E. Wada, and S. Kanemasa, Chem. Lett., 1983, 1525.
- 2) L. Claisen, Justus Liebigs Ann. Chem., 297, 1 (1897).
- 3) All the new compounds reported herein provided satisfactory elemental analyses.
- 4) $\underline{3a}$: IR (KBr) 1720, 1645 cm⁻¹ (C=O); 1 H-NMR (CDCl $_{3}$) δ 2.67 (3H, s, MeCO), 3.87, 3.90 (each 3H, s, OMe), 7.02, 8.27 (each 1H, s, ArH), 12.50 ppm (1H, s, OH); Mass m/e 252 (M $^{+}$).
- 5) $\underline{5a}$: IR (KBr) 1765, 1710-1610 cm⁻¹ (C=O, C=C); 1 H-NMR (CDCl₃) δ 2.25 (3H, s, MeCO), 2.64 (1H, dd, J=16.2, 14.4 Hz, CH₂), 3.07 (1H, dd, J=16.2, 7.1 Hz, CH₂), 3.73 (1H, ddd, J=14.4, 7.1, 2.4 Hz, CH), 7.20-7.50 (6H, m, ArH, =CH), 16.00 ppm (1H, s, OH); Mass m/e 283 (M⁺).
- 6) O. Tsuge, S. Kanemasa, H. Sakoh, and E. Wada, Chem. Lett., 1984, the following paper.
- 7) <u>6a</u>: IR (KBr) 1775, 1705 (C=O), 1250, 845 cm⁻¹ (Me₃Si); ¹H-NMR (CDCl₃) δ 0.19, 0.25 (each 9H, s, Me₃Si), 2.48-3.80 (8H, m, CH₂, CH), 3.20 (3H, s, OMe), 4.91 (1H, d, J=3.5 Hz, 6-H), 7.00-7.52 ppm (10H, m, ArH); Mass m/e 632 (M⁺).
- 8) The Dreiding model inspection shows the compound $\frac{7a}{2}$ would be less hindered than the iosmer with the other configuration at the 6-position.
- 9) $\underline{7a}$: IR (KBr) 1775, 1720-1660 cm⁻¹ (C=O); ¹H-NMR (CDCl₃) δ 2.45-3.92 (8H, m, CH₂, CH), 3.12 (3H, s, OMe), 5.10 (1H, d, J=4.0 Hz, 6-H), 7.10-7.60 ppm (10H, m, ArH); Mass m/e 470 (M⁺).
- 10) 9: IR (neat) 1860, 1785 (C=O), 1250, 850 cm $^{-1}$ (Me $_3$ Si); 1 H-NMR (CDCI $_3$) δ 0.24 (18H, s, Me $_3$ Si), 2.48 (1H, dd, J=16.5, 10.0 Hz, CH $_2$), 2.85 (1H, dd, J=16.5, 7.5 Hz, CH $_2$), 3.12 (1H, dd, J=10.0, 3.5 Hz, 3a-H), 3.17 (3H, s, OMe), 3.47 (1H, ddd, J=10.0, 10.0, 7.5 Hz, 7a-H), 4.37, 4.63 (each 1H, d, J=1.0 Hz, =CH $_2$), 4.65 ppm (1H, d, J=3.5 Hz, 4-H); Mass m/e 384 (M $^+$).
 - 10: IR (KBr) 1850, 1785, 1770, 1600 cm⁻¹ (C=O); 1 H-NMR (CDCl₃) $_{\delta}$ 2.20 (3H, s, MeCO), 2.54 (1H, dd, J=16.5, 9.0 Hz, CH₂), 2.96 (1H, dd, J=16.5, 8.0 Hz, CH₂), 3.14 (3H, s, OMe), 3.26 (1H, dd, J=11.0, 3.0 Hz, 3a-H), 3.61 (1H, m, 7a-H), 4.70 (1H, d, J=3.0 Hz, 4-H), 15.80 ppm (1H, s, OH); Mass m/e 240 (M⁺).
 - <u>11</u>: IR (KBr) 1725, 1690, 1610 cm⁻¹ (C=O); ¹H-NMR (CDCl₃) δ 2.14 (3H, s, MeCO), 2.71 (1H, dd, J=17.5, 7.0 Hz, CH₂), 2.94 (1H, dd, J=17.5, 3.2 Hz, CH₂), 3.64, 3.77 (each 3H, s, COOMe), 3.94 (1H, dd, J=7.0, 3.2 Hz, CH), 7.54 (1H, s, =CH), 15.94 ppm (1H, s, OH); Mass m/e 254 (M⁺).
- 11) The reaction mixture obtained from $\underline{1}$ and two equivalents of $\underline{8}$ in deuteriobenzene (at 40 °C for 4 h) showed the clear ${}^{1}\text{H-NMR}$ spectrum of bis-cycloadduct \underline{G} : δ 3.00 (s, OMe), 4.75 ppm (d, J=3.5 Hz, 6-H).